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Abstract

In this paper, we completely describe the spectrum of the gener-
alized Petersen graph P (n, k), thus adding to the classes of graphs
whose spectrum is completely known.

1 Introduction and motivation

Let G = (V (G), E(G)) be a simple graph. The spectrum of a graph G is the
multiset of eigenvalues of the adjacency matrix. The graph spectrum is an
important tool one can use to find information about the physical properties
of a network, such as robustness, diameter, connectivity [3]. In this research
we completely describe the spectrum for the class of graphs, defined below.

The generalized Petersen graph (GPG) P (n, k) has vertices, respectively,
edges given by

V (P (n, k)) = {ai, bi, 0 ≤ i ≤ n− 1},
E(P (n, k)) = {aiai+1, aibi, bibi+k | 0 ≤ i ≤ n− 1},

where the subscripts are expressed as integers modulo n (n ≥ 5), and k is the
“skip”. Note that k ≤ bn−1

2
c, because of the obvious isomorphism P (n, k) ∼=

P (n, n − k). Let A(n, k) (respectively, B(n, k)) be the subgraph of P (n, k)
consisting of the vertices {ai | 0 ≤ i ≤ n−1} (respectively, {bi | 0 ≤ i ≤ n−1})
and edges {aiai+1 | 0 ≤ i ≤ n − 1} (respectively, {bibi+k | 0 ≤ i ≤ n − 1}).
We will call A(n, k) (respectively, B(n, k)) the outer (respectively, inner)
subgraph of P (n, k). We display in Figure 1 the graph P (12, 3).

For other graph theoretical terminology the reader could refer to [7].

2 Eigenvalues of P (n, k)

In this section we find our description for the spectrum of generalized Pe-
tersen graphs P (n, k). We denote the adjacency matrix of the GPG P (n, k)

AMS Mathematics Subject Classification: 05C70, 05C12, 05C50, 15A42.
Keywords: Generalized Petersen Graphs; Eigenvalues; Spectrum.
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Figure 1: The Generalized Petersen Graph P (12, 3)

by A(P (n, k)). Let λ0 = 3 > λ1 ≥ λ2 ≥ · · · ≥ λ2n−1 be the sequence of
eigenvalues of P (n, k).

We call an n× n matrix circulant, and denote it by circ(a1, a2, . . . , an) if
it is of the form

circ(a1, a2, . . . , an) =


a1 a2 a3 . . . an
an a1 a2 . . . an−1
...

...
a2 a3 a4 . . . a1

 .

Lemma 2.1 The (2n)× (2n) adjacency matrix of the GPG P (n, k) has the
block form

A(P (n, k)) =

(
Cn
k In
In Cn

)
,

where In is the n × n identity matrix, Cn, Cn
k are circulant matrices, with

Cn = circ(0, 1, 0, 0, . . . , 0, 1) and Cn
k = circ(

k times︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0, 1,

k−1 times︷ ︸︸ ︷
0, . . . , 0)

being the adjacency matrix for A(n, k) and B(n, k), respectively. Thus, Cn
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is the adjacency matrix of a cycle graph on n vertices Cn, respectively, Cn
k is

the union of d cycle graphs Cn/d on n/d vertices, where d = gcd(n, k).

Proof. The outer subgraph (whose adjacency matrix is Cn) of P (n, k) is
the cycle graph Cn and the inner subgraph (whose adjacency matrix is Cn

k )
has d connected components each isomorphic to Cn/d. Also, the adjacency
matrix (which depends on the labeling) has the claimed form where the
labels used on the outer subgraph are consecutively 1, 2, . . . , n, and on the
inner subgraph the adjacent labels are i, i + k, i + 2k, . . . (where i + sk is
understood as 1 + (i− 1 + sk) (mod n)). Note that b0 is adjacent to vertex
bk in the subgraph and to vertex labeled bn−k in B(n, k), and so Cn

k =

circ(

k times︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0, 1,

k−1 times︷ ︸︸ ︷
0, . . . , 0) 2

We recall the Chebyshev’s polynomial of the first kind [5], defined by the
identity Tn(cos θ) = cos(nθ), with the generating function

∑∞
n=0 Tn(x)tn =

1−xt
1−2xt+t2 . We now present the eigenvectors and eigenvalues for Cn (see [2, p.
53 and pp. 72–73]). Let vt denote the transpose of v.

Lemma 2.2 The eigenvalues of the cycle graph Cn on n vertices are

αj = 2 cos

(
2πj

n

)
with a corresponding eigenvector

vj = (1, ζj, ζ2j, . . . , ζ(n−1)j)t,

0 ≤ j ≤ n− 1. The characteristic polynomial of the cycle Cn is 2Tn(x/2)− 2
where Tn is the Chebyshev’s polynomial of the first kind.

Corollary 2.3 The eigenvalues corresponding to the circulant C in the ad-
jacency matrix A(P (n, k)) are αj = 2 cos

(
2πj
n

)
(0 ≤ j ≤ n − 1), and the

eigenvalues corresponding to Ck are βj = 2 cos
(
2πjk
n

)
(0 ≤ j ≤ n− 1).

We now state our main theorem which adds to the class of graphs whose
spectrum is now known.

Theorem 2.4 The eigenvalues of P (n, k), say δ2j, δ2j+1, are all roots of the
quadratic equation

δ2 − (αj + βj)δ + αjβj − 1 = 0, (1)

where αj = 2 cos
(
2πj
n

)
, βj = 2 cos

(
2πjk
n

)
= 2Tk(αj/2) (0 ≤ j ≤ n − 1) are

the eigenvalues of C, respectively Ck.
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Proof. We first consider the case of d = gcd(n, k) = 1. Since d = 1,
then Ck is the adjacency matrix of a cycle graph isomorphic to Cn, and
so it is similar to C, that is, there exists a permutation matrix P , such
that P−1CkP = C. This implies that the two matrices will have the same
eigenvalues and eigenvectors. Then αj, βj are eigenvalues corresponding to

the same eigenvector, say vj = (1, ζjn, . . . , ζ
(n−1)j
n )t. We are looking for an

eigenvector for A(P (n, k)) of the form wj = (ajvj,vj)
t, where aj will be

determined later. If two distinct values for aj are to be found, for any 0 ≤
j ≤ n−1, then we are done with our search for the eigenvectors/eigenvalues.

With this value for wj, we need δ (dependent on j) such that(
Ck In
In C

)(
ajvj
vj

)
= δ

(
ajvj
vj

)
and so, we get the system{

ajCkvj + vj = δajvj
ajvj + Cvj = δvj.

⇐⇒
{

ajβjvj + vj = δajvj
ajvj + αjvj = δvj,

which implies {
aj(δ − βj)vj = vj
(δ − αj)vj = ajvj,

and so, (δ − βj)(δ − αj) = 1, which renders the claim for this case, that is, δ
must satisfy the equation δ2 − (αj + βj)δ + αjβj − 1 = 0.

The case of d > 1 is treated similarly. The eigenvectors wj must have
the form wj = (a1v

′
j, a2v

′
j, . . . , adv

′
j, vj), with vj as before and v′j =

(1, ζjn, . . . , ζ
(n′−1)j
n )t, n′ = n/d, for some appropriate multipliers ai. A similar

system to the one for d = 1 case will be obtained and, interestingly enough,
the same polynomial whose roots are the eigenvalues λi will be found. The
theorem is proved. 2

Using the quadratic formula in (1) and simplifying we get the following
corollary.

Corollary 2.5 The eigenvalues of P (n, k) are given by

cos

(
2πj

n

)
+ cos

(
2πjk

n

)
±

√(
cos

(
2πj

n

)
− cos

(
2πjk

n

))2

+ 1, 0 ≤ j ≤ n− 1.
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The largest eigenvalue of P (n, k), λ0 = 3, is one of the two values obtained
for j = 0 in the previous corollary. It is known (see [2, Thm. 3.11]) that if a
graph is bipartite, then its spectrum is symmetric with respect to 0. In our
case, we have the following result.

Corollary 2.6 If n is even and k is odd, then the eigenvalues of the bipartite
graph P (n, k) are given by ±3 and

cos(2jπ/n) + cos(2jkπ/n)±
√

(cos(2jπ/n)− cos(2jkπ/n))2 + 1

− cos(2jπ/n) + (−1)k cos(2jkπ/n)∓
√
(cos(2jπ/n) + (−1)k cos(2jkπ/n))2 + 1,

for 0 ≤ j < n/2.

3 Bounds on the eigenvalues of P (n, 2)

In the previous section we found the complete set of eigenvalues of P (n, k)
under no restrictions on n and k. Here, we would like to find some bounds
on some eigenvalues. Eigenvalue interlacing techniques (see the great survey
by Haemers [4] on the topic) will not work easily since there is no visible
connection between the various P (n, k), and moreover, the technique is not
sensitive enough for our purpose. We shall use a different method.

Here, we will take k = 2 and consider P (n, 2) (this includes the case of the
classical Petersen graph P (5, 2)). Since the second Chebyshev polynomial of
the first kind is T2(x) = 2x2 − 1, we immediately obtain the following:

Theorem 3.1 The eigenvalues of P (n, 2) are (for 0 ≤ j ≤ n− 1)

2 cos2(2jπ/n) + cos(2jπ/n)− 1±
√

(2 cos2(2jπ/n)− cos(2jπ/n)− 1)2 + 1.

To find good bounds on the eigenvalues in this case, we look for the extreme
points of the two functions

f±(x) = 2x2 + x− 1±
√

(2x2 − x− 1)2 + 1, (2)

in the interval −1 ≤ x ≤ 1. Certainly, we cannot expect exact or even
tight results, in general, since the sequence 2jπ

n
, 0 ≤ j < n − 1, is finite and

therefore, cos
(
2jπ
n

)
is not dense in this interval. However, we will have lower
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and upper bounds, which is what we are interested in. Since any differentiable
function in a compact domain attains its extreme points at either the critical
points or on the boundary, we proceed by studying first the functions’ critical
points:

f ′±(x) = 4x+ 1± (2x2 − x− 1)(4x− 1)√
(2x2 − x− 1)2 + 1

= 0,

has solutions (computed by Mathematica) at x1 ∼ −0.41100 (for f+) and
x2 ∼ −0.65041, x3 ∼ −0.04610 (for f−). The values of the corresponding f±
at these critical points are

f+(−0.41100) = −0.04210 . . .

f−(−0.65041) = −1.92081 . . .

f−(−0.04610) = −2.42092 . . . .

Further, we look at the values of f± at |x| = 1. Thus, f+(1) = 3, f+(−1) =√
5, and f−(1) = 1, f−(−1) = −

√
5. Certainly, the maximum value is 3, and

the minimum value is approximately -2.42092. We sketch in Figure 2 the two
functions f±, to visualize our analysis from above:

Figure 2: The top function is f+ and the bottom function is f−

Every value of f+ is above every value of f−, and so the minimum is
attained by f− and the maximum is attained by f+. Furthermore, we see

A Trademark of Wolfram Research
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that the second largest eigenvalue of P (n, 2) is

λ1 = f+

(
cos

(
2π

n

))
= cos

(
2π

n

)
+ cos

(
4π

n

)
+

√
4

(
2 cos

(
2π

n

)
+ 1

)2

sin4
(π
n

)
+ 1,

(3)

which increases as n increases (shown simply by using Calculus techniques).
For instance, for 3 ≤ n ≤ 20 the sequence λ1 = λ1(n) is

0, 0.41421, 1., 1.41421, 1.71083, 1.93185, 2.10199, 2.23607, 2.34356, 2.43091,

2.50268, 2.56224, 2.61211, 2.65421, 2.69002, 2.7207, 2.74716, 2.77011.

Since lim
n→∞

cos

(
2π

n

)
= 1, we obtain the next result.

Theorem 3.2 The eigenvalues of P (n, 2) are

λ0 = 3 > λ1 ≥ . . . ≥ λ2n−1 ≥ −2.42092.

Moreover, the second largest eigenvalue satisfies lim
n→∞

λ1(n) = 3.

Acknowledgement. The authors are grateful to the referee whose sug-
gestions have led to an improvement in the presentation of this paper. During
the preparation of this paper, the authors were partially supported by a RIP
grant from NPS.

4 Further comments

All of our results for P (n, 2) can be certainly extended to P (n, 3), P (n, 4),
etc., but to find sensitive bounds on eigenvalues for arbitrary GPG P (n, k)
does not seem to be easy, since the sequence of the involved Chebyshev’s poly-
nomials of the first kind does not have a “controllable” behavior in |x| ≤ 1.

Also, it would be interesting to investigate the number of and distinct
values among the eigenvalues of P (n, k), and that is presumably doable. We
suspect that the methods of this paper can be also applied to the I-graphs
of [1] or the supergeneralized Petersen graphs of [6].
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